R. Balasubramanian K. Soundararajan | On a conjecture of R. L. Graham | 1-38 |
U. Balakrishnan Y. Pétermann | The Dirichlet series of ζ(s)ζ^α(s+1)f(s+1): On an error term associated with its coefficients | 39-69 |
K. Feng | Non-congruent numbers, odd graphs and the Birch–Swinnerton-Dyer conjecture | 71-83 |
V. Lev | Distribution of lattice points on hyperbolic surfaces | 85-95 |
S. Akiyama | On the pure Jacobi sums | 97-104 |
K. Williams J. Huard Z. Nan-Yue | On Tornheim’s double series | 105-117 |
K. Ramachandra A. Sankaranarayanan K. Srinivas | Problems and results on αp − βq | 119-131 |
T. Łuczak Y. Kohayakawa V. Rödl | Arithmetic progressions of length three in subsets of a random set | 133-163 |
N. Tzanakis | Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations | 165-190 |
Y. Stanchescu | On addition of two distinct sets of integers | 191-194 |
C. Liu | On character sums of rational functions over local fields | 195-204 |
K. Matthews | Minimal multipliers for consecutive Fibonacci numbers | 205-218 |
V. Bernik V. Beresnevich | On a metrical theorem of W. Schmidt | 219-233 |
L. Skula T. Agoh | Kummer type congruences and Stickelberger subideals | 235-250 |
C. Skinner | Solvability of p-adic diagonal equations | 251-258 |
R. Ahlswede L. Khachatrian | Sets of integers with pairwise common divisor and a factor from a specified set of primes | 259-276 |
G. Kuba | The two parameter hyperbola problem | 277-285 |
M. Mignotte | A note on the equation ax^n − by^n = c | 287-295 |
H. Cohn | Symmetry and specializability in continued fractions | 297-320 |
D. Grant | A proof of quintic reciprocity using the arithmetic of y^2 = x^5 + 1/4 | 321-337 |
H. Hwang | Asymptotic behaviour of some infinite products involving prime numbers | 339-350 |
M. Yoshimoto S. Kanemitsu | Farey series and the Riemann hypothesis | 351-374 |
J. Thunder J. Wolfskill | Algebraic integers of small discriminant | 375-382 |
H. Niederreiter C. Xing | Explicit global function fields over the binary field with many rational places | 383-396 |