J. Voloch | An analogue of the Weierstrass ζ-function in characteristic p | 1-6 |
K. Ribet | On the equation a^p + 2^α b^p + c^p = 0 | 7-16 |
D. Heath-Brown | The density of rational points on cubic surfaces | 17-30 |
A. Laurinčikas | On limit distribution of the Matsumoto zeta-function | 31-39 |
A. Bremner | Some special curves of genus 5 | 41-51 |
R. Rankin | Burnside’s uniformization | 53-57 |
H. Niederreiter C. Xing | Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places | 59-76 |
A. Schinzel | On the Mahler measure of polynomials in many variables | 77-81 |
K. Szymiczek P. Conner R. Perlis | Wild sets and 2-ranks of class groups | 83-91 |
R. Tijdeman C. Stewart | On the greatest prime factor of (ab + 1)(ac + 1)(bc + 1) | 93-101 |
F. Beukers D. Zagier | Lower bounds of heights of points on hypersurfaces | 103-111 |
A. Skorobogatov P. Swinnerton-Dyer J. Colliot-Thélène | Double fibres and double covers: paucity of rational points | 113-135 |
M. Waldschmidt | Approximation simultanée par des produits de puissances de nombres algébriques | 137-162 |
A. Sárközy K. Győry | On prime factors of integers of the form (ab + 1)(bc + 1)(ca + 1) | 163-171 |
K. Győry G. Everest | Counting solutions of decomposable form equations | 173-191 |
R. Vaughan T. Wooley | A special case of Vinogradov’s mean value theorem | 193-204 |
S. Patterson | The asymptotic distribution of Kloosterman sums | 205-219 |
A. Pfister | Small zeros of quadratic forms over algebraic function fields | 221-238 |
G. Rhin C. Smyth | On the Mahler measure of the composition of two polynomials | 239-247 |
H. Iwaniec E. Fouvry | Gaussian primes | 249-287 |
C. Hooley | On a problem of Hardy and Littlewood | 289-311 |
D. Burgess | On the average of character sums for a group of characters | 313-332 |
E. Flynn N. Smart | Canonical heights on the Jacobians of curves of genus 2 and the infinite descent | 333-352 |
P. Erdös M. Rosenfeld | The factor-difference set of integers | 353-359 |
E. Bombieri J. Mueller M. Poe | The unit equation and the cluster principle | 361-389 |