Z. Vetulani | Ramifield analysis and the minimal β-models of higher order arithmetics | 1-15 |
P. Howard | Binary consistent choice on pairs and a generalization of Konig's infinity lemma | 17-23 |
J. McClendon | Subopen multifunctions and selections | 25-30 |
Y. Yajima | Notes on topological games | 31-40 |
G. Skordev | Fixed point index for open sets in euclidean spaces | 41-58 |
K. Borsuk S. Nowak S. Spież | Remarks on the n-dimensional geometric measure of compacta | 59-71 |
H. Schirmer | Fix-finite approximation of n-valued multifunctions | 73-80 |
J. Chaber | A universal metacompact developable T1-space of weight m | 81-88 |
J. Kennedy Phelps | A condition under which 2-homogeneity and representability are the same in continua | 89-98 |
A. Apter | A generalized version of the singular cardinals problem | 99-116 |
D. Lascar | Relation entre le rang U et le poids | 117-123 |
A. Pillay | Countable modules | 125-132 |
V. Akis | Fixed point theorems and almost continuity | 133-142 |
J. Brown G. Cox | Baire category in spaces of probability measures, II | 143-148 |
K. Alster | On Michael's problem concerning the Lindelöf property in the Cartesian products | 149-167 |
R. Shrott | Universally measurable spaces: an invariance theorem and diverse characterizations | 169-176 |
P. Morales | Correction to my paper "Topological contraction principle" (Fundamenta Mathematicae 110 (1980), pp. 135-144) | 177-178 |
M. Wochele | The equicontinuous structure relation of a unicoherent pointtransitive flow | 179-188 |
C. Dorsett | Connectivity properties in hyperspaces and product spaces | 189-197 |
Z. Grande E. Grande | Quelques remarques sur la superposition F(x,ƒ(x)) | 199-211 |
M. Kaufmann | Mutually generic classes and incompatible expansions | 213-218 |
J. van Mill E. Wattel | Orderability form selections: Another solution to the orderability problem | 219-229 |
G. Gordh E. Vought | Monotone decompositions of hereditarily unicoherent continua via set functions and quasi-orders | 231-238 |
K. Schilling | On absolutely Δ12 operations | 239-250 |
R. Pol | On Borel-measurable collections of countable-dimensional sets | 251-261 |