S. Watson Z. Hao-Xuan | Caliber (ω1, ω) is not productive | 1-4 |

K. Eda | Slender modules, endo-slender abelian groups and large cardinals | 5-24 |

P. Zbierski R. Frankiewicz | On partitioner-representability of Boolean algebras | 25-35 |

L. Heindorf | Boolean semigroup rings and exponentials of compact zero-dimensional spaces | 37-47 |

J. Kulesza | The dimension of products of complete separable metric spaces | 49-54 |

C. Freiling D. Rinne | An approximate analog of a theorem of Khintchine | 55-59 |

A. Tsuboi | Non-multidimensional theories without groups | 61-64 |

R. Bennett J. Chaber | A subclass of the class MOBI | 65-75 |

W. Dziobiak | Relative congruence distributivity within quasivarieties of nearly associative Φ-algebras | 77-95 |

W. Olszewski | Universal spaces for locally finite-dimensional and strongly countabledimensional metrizable spaces | 97-109 |

B. Wchrfritz | The upper central series of some matrix groups | 111-126 |

S. Spież | The structure of compacta satisfying dim (XxX)< 2 dim X | 127-145 |

. | Errata | 146-146 |

R. Srzednicki | Periodic orbits indices | 147-173 |

D. Miklaszewski | A reduction of the Nielsen fixed point theorem for symmetric product maps to the Lefschetz theorem | 175-176 |

R. Shortt | Normal subgroups of measurable automorphisms | 177-187 |

A. Maitra V. Pestien S. Ramakrishnan | Domination by Borel stopping times and some separation properties | 189-201 |

A. Kisielewicz | On reduction theorems in the problem of composition of functions | 203-211 |

S. Spież | On pairs of compacta with dim (X х Y) < dim X + dim Y | 213-222 |